Celek Pharmaceuticals

Company Background

Celek Pharmaceuticals is addressing the need for new medicines to help patients suffering from cancers that are poorly served by current therapies. The company’s strategy is to enhance the value of in-licensed drug candidates by advancing them through proof-of-concept clinical trials. Formed as a Delaware LLC in 2009, Celek’s two founders, Graham Allaway, Ph.D., and Gary Robinson, Ph.D., are currently the sole employees. 

Technology Overview

Celek’s lead product, CEL-031, is a clinical-stage targeted anticancer drug that selectively induces apoptosis in tumor cells by inhibiting cyclic GMP phosphodiesterases, which are overexpressed in human tumors. Currently in preclinical development for non-muscle invasive bladder cancer (NMIBC), CEL-031’s mechanism of action involves the degradation of β-catenin, a cell signaling protein that plays a key role in bladder cancer tumorigenesis. In clinical studies against advanced cancers, orally-administered CEL-031 showed evidence of efficacy and a good safety profile. CEL-031 should have greater clinical efficacy against NMIBC, where it will be administered intravesically (i.e., instilled transurethrally), the standard drug delivery route for this indication. 

Market Potential

Bladder cancer is the fifth most common cancer in the U.S., with 70,000 new cases annually and 600,000 individuals living with the disease. Worldwide, there are approximately 400,000 new cases annually and the incidence is rising. 

About 70 percent of new bladder cancer diagnoses are made at the non-muscle invasive stage. Current NMIBC treatments involve transurethral resection (TUR), often followed by intravesical chemotherapy using non-specific cytotoxic drugs such as mitomycin C, or immunotherapy with Bacillus Calmette Guerin (BCG). These treatments often fail, with five-year recurrence and progression rates of 50-70 percent and 20-30 percent, respectively. Current drugs also cause adverse side-effects and are hazardous to health care workers.

Since NMIBC is a chronic disease requiring lifelong monitoring and treatment, the lifetime cost per patient of treating bladder cancer is the highest of all cancers.

Despite the pressing need, few new drugs are in development for NMIBC. Celek is developing CEL-031 for two NMIBC indications: (i) perioperative administration following TUR, and (ii) BCG-refractory NMIBC. CEL-031’s estimated peak annual sales in these indications range from $510 million to $660 million. 

Competitive Advantage

As the first targeted drug for NMIBC, CEL-031 represents a potential breakthrough in the treatment of patients with this disease. It should be possible to deliver CEL-031 safely at higher, more effective doses than current cytotoxic chemotherapies, resulting in dramatic reductions in rates of recurrence and progression. CEL-031’s favorable safety profile should also result in a substantial increase in the number of patients treated with CEL-031 compared to current drugs.

Financial Overview

Celek has raised more than $700,000 in funding, including investments by the principals and federal and state grants. The NCI awarded Celek a $176,000 Phase I SBIR contract supporting preclinical studies on CEL-031 for NMIBC. Celek is currently seeking to raise $3 million to support preclinical studies of CEL-031 in bladder cancer and acute myeloid leukemia (AML), and the initiation of a Phase I/II clinical trial in non-muscle invasive bladder cancer. 

Intellectual Property

Celek obtained exclusive rights to CEL-031 from OSI Pharmaceuticals. CEL-031 as a composition of matter and methods of treating cancer with CEL-031 are covered by four issued U.S. patents (plus foreign equivalents). Additional patents cover analogs, methods of identifying anticancer compounds and combination therapies. 

Commercialization Strategy

Celek plans to complete a proof-of-concept clinical trial of CEL-031 in NMIBC patients, then partner for later stage development/commercialization. Recent partnering deals in this therapeutic area have had attractive financial terms. Celek has already met with potential partners who indicated interest in the product. 

Pipeline Products

Celek is also developing CEL-031 to treat advanced cancers using novel formulation and delivery technologies to increase concentrations of the drug in the body, thereby maximizing efficacy. The company is focusing on: (i) advanced bladder cancer, and (ii) acute myeloid leukemia (AML). A recently published independent study reported that CEL-031 has potent activity against tumor cells from AML patients, including those resistant to current drugs, and recommended clinical testing of CEL-031 against AML. CEL-031 would be eligible for Orphan Drug status in this indication.

Management Team

Graham Allaway, Ph.D., President and C.E.O, has spent 22 years in the biotechnology industry. As founding CEO of Panacos Pharmaceuticals, he played a key role in building that company from a private venture-backed start-up to a public company, while raising more than $125 million in private and public equity financing. Dr. Allaway also led Panacos’ drug discovery and development programs. Prior to Panacos, Dr. Allaway was CEO of Manchester Biotech and he previously led therapeutic R&D at Progenics Pharmaceuticals. 

Gary Robinson, Ph.D., Chief Business Officer, has 20 years of experience in research, development, and commercialization of technologies and products in the physical and life sciences. Most recently, he was Senior Director of Business Development at Panacos Pharmaceuticals, where he led partnering, contracting, intellectual property and pre-launch marketing activities. Prior to Panacos, Dr. Robinson held business and corporate development positions at IGEN.

Technology Area
Graham Allaway, Ph.D.
President & CEO 
Gary Robinson
Chief Business Officer 

CellSight Technologies

Aruna Gambhir
CEO 
Samuel Quezada
Chief Operating Officer 

Centrose

Company Background

Centrose is a biotechnology company formed in 2006 and is focused on developing a novel antibody-drug conjugation (ADC) technology that targets a wide variety of diseased cells. Centrose discovered the first-ever synergistic drug targeting system called the Extracellular Drug Conjugate System (EDC). 

Centrose has 10 employees and projects to grow to 25 staff. 

Technology Overview

Centrose is a preclinical stage company developing a novel ADC technology that targets a wide variety of diseased cells. Centrose discovered the first-ever synergistic drug targeting system called the EDC System. EDCs are like (ADCs), but are safer and more effective because they are not pro-drugs and only affect diseased cells. To modulate cell growth and activity, EDCs use antibodies (specific to diseased cells) attached to Centrose’s proprietary modulating drugs to work in concert together – the two must be attached to work. Currently, Centrose has four EDC lead drug candidates. As a platform, the EDC system allows for the construction and development of targeted drugs that can be developed for multiple indications including cancer, inflammation, and diabetes.

Market Potential 

Currently, Centrose has four lead programs that it anticipates moving into clinical trials in the next 24 months. The company’s lead program, EDC1, is focused on the lung and metastatic cancer markets; specifically non-small cell lung cancer (NSCLC) and pancreatic cancer. 

Competitive Advantage

There are limitations with regards to traditional antibody drug conjugates technologies:

  • First, ADC cell internalization is inefficient and requires the use of very toxic drugs; 
  • Second, to become activated, the drugs must be released from the antibody;
  • Third, once released, the drugs can interact with normal surrounding tissue leading to toxicity concerns.

In combination, these requirements present formidable design challenges and seriously limit the power of traditional antibody drug conjugates.

To address these problems, Centrose discovered and developed a revolutionary new type of ADC, called EDC. The Centrose EDC system is composed of three parts: a binding component that specifically targets diseased cells, a proprietary drug, and a linker that connects them. This is similar to the ADC system except that the EDC never requires drug dissociation or cell internalization, negating the three major problems of the ADC system. 

Financial Overview

Centrose has raised $3.5 million from individuals and $1.5 million from government grants. The company is currently looking to raise $20 million under a Series A round to move Centrose’s lead compound into and through Phase I clinical trials.

Intellectual Property 

Centrose technology is the sole property of Centrose. Centrose has applied for multiple U.S. and worldwide patents covering EDC technology. Centrose also has the freedom-to-operate in the space. 

Commercialization Strategy 

Centrose’s business strategy is focused on producing the next generation of targeted therapies and to out-license these assets to select pharmaceutical companies. Strategic partnering is therefore critical to advance Centrose's novel therapeutics programs into clinical development and then to the market.

Pipeline Products 

In addition to EDC1, Centrose has four other EDC programs:

EDC2

The antibody target is CD147 and is highly expressed on cancer cells where it facilitates invasion and metastasis. CD147 is also a biomarker for wide range of cancers. As proof of efficacy, Centrose has tested EDC2 and with gemcitabine on pancreatic cell line and demonstrated that EDC2 shows picomolar activity on PANC1 cell line verses gemcitabine, which demonstrated only micromolar activity. Gemcitabine is approved for the treatment of pancreatic cancer.

EDC3

The antibody target is CD44v6 and is associated with tumor progression, metastasis, and specifically with NSCLC lymph node metastasis. Centrose studies show Na,K-ATPase-and CD44v6 complexes on certain cancer cells, yet EDC3 is not toxic to human skin cells in culture (warhead target is low on normal skin). 

EDC7

The antibody target for EDC7 is CD56 (aka NCAM-Neural Cell Adhesion Molecule). The mAB target, CD56, is also the target of ImmunoGen’s lead internal program: IMGN-901. CD56 is highly expressed on the following human tumors SCLC, multiple myeloma, ovarian, and other related indications such as leukemia and Wilms’ Tumor. Studies show Na,K-ATPase-and NCAM, form a complex on SCLC cells. EDC7 demonstrated low picomolar level activity when cancer cells express CD56; thus EDC7 may be an excellent candidate for SCLC.

Management Team 

Dr. James Prudent is the CEO and founder of Centrose and brings more than 20 years of biotechnology. Before Centrose, Dr. Prudent served as Chief Scientific Officer and on the Board of Directors at EraGen Biosciences (sold to Luminex). Dr. Prudent received his doctorate in chemistry from the University of California at Berkeley.

Steve Worsley is the Chief Business Officer and brings 25 years in the biotechnology industry to Centrose. Mr. Worsley has executed numerous transactions in the mAB market; most notably with the companies Abgenix and Raven Biotechnologies. Mr. Worsley out-licensed Vectibix®, the first fully human mAB specific to the EGFr (HER1). He received his MBA from the University of Washington.

The technical staff at Centrose includes two managers, Dave Marshall, Director of EDC Technologies,and Dr. Mohammed Shekhani, Director of Chemistry, who manage the biotechnology and chemistry groups respectively. 

The technical group is provided consultation by Dr. Homer Pearce who developed gemcitabine (Gemzar) and has numerous years of experience in oncology while at Eli Lilly and numerous other technical advisors.

Technology Area
Stephen Worsley
Chief Business Officer 

Colby Pharmaceutical Company

Jeff Fairman
Colby Pharmaceutical Company 
David Zarling
CEO 

Corvida Medical

John Slump
CFO & Co-Founder 

Cynvenio Biosystems Inc.

Paul Dempsey
VP Bioengineering R&D