Neil Ackerman United States

MyeloRx is developing proprietary prodrugs and derivatives of the natural product triptolide. This agent has demonstrated clinical efficacy in acute leukemias. The company is currently funded by an NCI Fast Track SBIR contract enabling the development of its lead product, MRx102. MRx102 has demonstrated efficacy in a variety of preclinical models of AML; this work, performed in collaboration with Dr. Michael Andreeff of the M.D. Anderson Cancer Center, was recently published in Leukemia.  It has also shown a high degree of safety in rodent toxicology models. 

 Based on its novel mechanism of action, the inhibition of XPB, it is expected to enhance the effects of radiation in solid tumors. Preclinical data support this hypothesis.

 The compound is currently undergoing additional toxicology studies in rodents as well as toxicology studies in dogs. Is has patent coverage in the U.S., E.U., Japan and China.

The principals have extensive pharmaceutical experience at both large (Pfizer, Wyeth, DuPont) and small (Cetus, Cygnus and Pharmagenesis) pharmaceutical/biotechnology organizations. 

Website:
www.myelorx.com
Technology Area
MyeloRx LLC
VP Business Development 

Graham Allaway, Ph.D.

Company Background

Celek Pharmaceuticals is addressing the need for new medicines to help patients suffering from cancers that are poorly served by current therapies. The company’s strategy is to enhance the value of in-licensed drug candidates by advancing them through proof-of-concept clinical trials. Formed as a Delaware LLC in 2009, Celek’s two founders, Graham Allaway, Ph.D., and Gary Robinson, Ph.D., are currently the sole employees. 

Technology Overview

Celek’s lead product, CEL-031, is a clinical-stage targeted anticancer drug that selectively induces apoptosis in tumor cells by inhibiting cyclic GMP phosphodiesterases, which are overexpressed in human tumors. Currently in preclinical development for non-muscle invasive bladder cancer (NMIBC), CEL-031’s mechanism of action involves the degradation of β-catenin, a cell signaling protein that plays a key role in bladder cancer tumorigenesis. In clinical studies against advanced cancers, orally-administered CEL-031 showed evidence of efficacy and a good safety profile. CEL-031 should have greater clinical efficacy against NMIBC, where it will be administered intravesically (i.e., instilled transurethrally), the standard drug delivery route for this indication. 

Market Potential

Bladder cancer is the fifth most common cancer in the U.S., with 70,000 new cases annually and 600,000 individuals living with the disease. Worldwide, there are approximately 400,000 new cases annually and the incidence is rising. 

About 70 percent of new bladder cancer diagnoses are made at the non-muscle invasive stage. Current NMIBC treatments involve transurethral resection (TUR), often followed by intravesical chemotherapy using non-specific cytotoxic drugs such as mitomycin C, or immunotherapy with Bacillus Calmette Guerin (BCG). These treatments often fail, with five-year recurrence and progression rates of 50-70 percent and 20-30 percent, respectively. Current drugs also cause adverse side-effects and are hazardous to health care workers.

Since NMIBC is a chronic disease requiring lifelong monitoring and treatment, the lifetime cost per patient of treating bladder cancer is the highest of all cancers.

Despite the pressing need, few new drugs are in development for NMIBC. Celek is developing CEL-031 for two NMIBC indications: (i) perioperative administration following TUR, and (ii) BCG-refractory NMIBC. CEL-031’s estimated peak annual sales in these indications range from $510 million to $660 million. 

Competitive Advantage

As the first targeted drug for NMIBC, CEL-031 represents a potential breakthrough in the treatment of patients with this disease. It should be possible to deliver CEL-031 safely at higher, more effective doses than current cytotoxic chemotherapies, resulting in dramatic reductions in rates of recurrence and progression. CEL-031’s favorable safety profile should also result in a substantial increase in the number of patients treated with CEL-031 compared to current drugs.

Financial Overview

Celek has raised more than $700,000 in funding, including investments by the principals and federal and state grants. The NCI awarded Celek a $176,000 Phase I SBIR contract supporting preclinical studies on CEL-031 for NMIBC. Celek is currently seeking to raise $3 million to support preclinical studies of CEL-031 in bladder cancer and acute myeloid leukemia (AML), and the initiation of a Phase I/II clinical trial in non-muscle invasive bladder cancer. 

Intellectual Property

Celek obtained exclusive rights to CEL-031 from OSI Pharmaceuticals. CEL-031 as a composition of matter and methods of treating cancer with CEL-031 are covered by four issued U.S. patents (plus foreign equivalents). Additional patents cover analogs, methods of identifying anticancer compounds and combination therapies. 

Commercialization Strategy

Celek plans to complete a proof-of-concept clinical trial of CEL-031 in NMIBC patients, then partner for later stage development/commercialization. Recent partnering deals in this therapeutic area have had attractive financial terms. Celek has already met with potential partners who indicated interest in the product. 

Pipeline Products

Celek is also developing CEL-031 to treat advanced cancers using novel formulation and delivery technologies to increase concentrations of the drug in the body, thereby maximizing efficacy. The company is focusing on: (i) advanced bladder cancer, and (ii) acute myeloid leukemia (AML). A recently published independent study reported that CEL-031 has potent activity against tumor cells from AML patients, including those resistant to current drugs, and recommended clinical testing of CEL-031 against AML. CEL-031 would be eligible for Orphan Drug status in this indication.

Management Team

Graham Allaway, Ph.D., President and C.E.O, has spent 22 years in the biotechnology industry. As founding CEO of Panacos Pharmaceuticals, he played a key role in building that company from a private venture-backed start-up to a public company, while raising more than $125 million in private and public equity financing. Dr. Allaway also led Panacos’ drug discovery and development programs. Prior to Panacos, Dr. Allaway was CEO of Manchester Biotech and he previously led therapeutic R&D at Progenics Pharmaceuticals. 

Gary Robinson, Ph.D., Chief Business Officer, has 20 years of experience in research, development, and commercialization of technologies and products in the physical and life sciences. Most recently, he was Senior Director of Business Development at Panacos Pharmaceuticals, where he led partnering, contracting, intellectual property and pre-launch marketing activities. Prior to Panacos, Dr. Robinson held business and corporate development positions at IGEN.

Technology Area
Celek Pharmaceuticals
President & CEO 

Scott Allocco

Company Background

BioMarker Strategies was founded in 2006 by Dr. Douglas Clark, a Professor of Pathology at Johns Hopkins, to improve the treatment of cancer by developing first-in-class, live-tumor-cell-based predictive tests to guide targeted drug therapy selection. Today the company is based at the Johns Hopkins Science + Technology Park and employs 10 people. BioMarker Strategies has successfully developed the SnapPath™ testing platform, and is engaged in pre-clinical and clinical studies with two major academic medical centers. 

Technology Overview

The SnapPath biomarker testing system is an automated live-tumor-cell processing platform that enables next-generation, ex vivo biomarker tests to guide targeted drug therapy selection. A small portion of a patient’s live tumor (from a biopsy or surgical excision) is placed into a disposable cartridge and inserted into the SnapPath instrument. The SnapPath uses onboard robotics and fluid handling systems to expose a patient’s live tumor cells to drugs and/or growth factors to evoke a phosphoprotein-based Functional Signaling Profile (FSP) of the signal transduction network that is not possible using static biomarkers from dead, fixed tissue. These FSPs generated by the SnapPath device can be utilized by oncologists to guide targeted therapy for cancer patients. To date, the company completed proof-of-mechanism studies with human melanoma samples using a prototype device, produced and verified several SnapPath alpha units, and placed two of alpha units at academic medical centers for clinical research studies.

Market Potential 

With approximately 1.5 million solid tumor cancer patients in the U.S., the total addressable market for live-tissue testing exceeds $5 billion, assuming value-based reimbursement. Within this population, the initial target markets include: 

  • Melanoma (BRAF V600E)
  • Lung carcinoma (EGFR wt)
  • Colorectal carcinoma (KRAS wt)
  • Breast (Triple Negative) 
  • Renal cell carcinoma 

Competitive Advantage 

Most current molecular profiling strategies rely on the analysis of static DNA or protein-based biomarkers, but this tells little about the actual functioning of the complex signal transduction network within tumor cells. By interrogating living solid tumor cells from cancer patients using the SnapPath testing platform, the resultant predictive tests will contain novel information content — such as pathway bypass mechanisms and feedback loops — that will enable oncologists to select better targeted therapies, including drug combinations, for their patients. 

Financial Overview 

To date, BioMarker Strategies has obtained the following funding:

  • $9 million from private investors 
  • $2.3 million SBIR Fast Track Phase I/II contract for SnapPath instrumentation development
  • $200,000 Phase I SBIR contract for companion diagnostic development 
  • Additional funding from the Federal Therapeutic Discovery Tax Credit Program, MD TEDCO, and Johnson & Johnson

BioMarker Strategies is currently seeking investors for an initial institutional investment round of $7 million to achieve the early-stage commercialization goals outlined below.

Intellectual Property 

BioMarker Strategies is using a combination of patent filings, trade secrets, and trademarks to protect its proprietary interest in the SnapPath testing system. To date, the company has filed three patent applications that focus on the platform, the process of ex vivo stimulation, and the resultant ex vivo test content. 

Commercialization Strategy 

The company’s long-term commercialization strategy is focused on developing SnapPath-deployed predictive tests to guide therapy for solid-tumor cancer patients in the U.S., Europe, and Asia. BioMarker Strategies will use the following steps to bring its products to market: 

  • Early-stage commercialization
  • Place first-generation SnapPath units at comprehensive cancer centers 
  • Achieve 510(k) approval for the platform
  • Expand academic and pharma collaborations 

Later-stage commercialization 

  • Increase SnapPath placements at additional cancer centers
  • Expand sales and marketing infrastructure
  • Validate and clinically qualify tests
  • Establish Clinical Laboratory Improvement Amendments (CLIA) lab and launch Laboratory Developed Tests (LDTs)
  • Transition LDTs to pre-market approval (PMA) 

Pipeline Products 

BioMarker Strategies’ proof-of-concept studies have focused on characterizing resistance to BRAF inhibitors in advanced melanoma. This will be followed by the development and launch of tests to guide targeted drug use in larger markets such as non-small-cell lung, colorectal, breast, and renal cell carcinomas. Given the ability to test specific drugs in the device, SnapPath also has the potential to become a platform to improve early drug development, provide more effective clinical trial design through patient stratification, and enable companion diagnostics. To this end, the company was awarded a SBIR grant in September 2011, to support the development of a pathway-based companion diagnostic test to use in conjunction with the SnapPath platform. 

Management Team 

Douglas Clark, M.D., Chief Medical Officer/Acting CEO, is an entrepreneur and a Professor of Pathology at The Johns Hopkins Medical Institutions, who brings over 20 years of experience in diagnostic pathology, laboratory management, and biomarker discovery. 

Scott Allocco, co-founder, brings 15 years of business development, pharmaceutical drug management, and public-sector reimbursement experience to the company, having most recently served as the Vice President of State Government Affairs and Business Development for Coventry Health Care. 

Adam Schayowitz Ph.D., MB A, Senior Director of Operations and Business Development, brings nearly a decade of experience in tumor cell biology with a focus in targeted cancer therapeutics, preclinical, and early clinical drug development, and leads the company’s strategic partnerships and collaborations with external collaborators.

Board of Directors: Glenn Miller, Ph.D., Chairman, VP/Head of Personalized Medicine at AstraZeneca; Dr. Samuel Broder, former Director of the National Cancer Institute; Dr. Paul Beresford, VP of Business Development at Biodesix and former VP of Translational Diagnostics at Ventana Medical Systems; Skip Klein, Managing Member at Gauss Capital Advisory and founder of the T. Rowe Price Health Sciences Fund; and Christy Wyskiel, former Managing Director at Maverick Capital and Life Sciences Equity Analyst at T. Rowe Price.

Technology Area
BioMarker Strategies
President